Associations of GSTM1*0 and GSTA1*A genotypes with the risk of cardiovascular death among hemodialyses patients
نویسندگان
چکیده
BACKGROUND The presence of glutathione transferase (GST) M1 null genotype (GSTM1-null) in end-stage renal disease (ESRD) patients is associated with lower overall survival rate in comparison to those with GSTM1-active variants. We examined association between GSTM1 and GSTT1 deletion polymorphisms as well as SNPs in GSTA1/rs3957357 and GSTP1/rs1695 genes with overall and cause-specific cardiovascular mortality in ESRD patients. METHODS Total of 199 patients undergoing hemodialysis were included in the study. Median value of time elapsed from dialysis initiation until the death, or the end of follow-up was 8 ± 5 years. The effect of GSTM1, GSTT1, GSTP1 and GSTA1 gene polymorphisms on predicting overall and specific cardiovascular outcomes (myocardial infarction, MI or stroke) was analyzed using Cox regression model, and differences in survival were determined by Kaplan-Meier. RESULTS GSTM1-null genotype in ESRD patients was found to be independent predictor of overall and cardiovascular mortality. However, after false discovery rate and Bonferroni corrections this effect was lost. The borderline effect modification by wild-type GSTA1*A/*A genotype on associations between GSTM1-null and analyzed outcomes was found only for death from stroke. Homozygous carriers of combined GSTM1*0/GSTA1*A genotype exhibited significantly shorter time to death of stroke or MI in comparison with carriers of either GSTM1-active or at least one GSTA1*B gene variant. The best survival rate regarding cardiovascular outcome was found for ESRD patients with combined GSTM1-active and mutant GSTA1*B/*B genotype. CONCLUSIONS Combined GSTM1*0/GSTA1*A genotypes might be considered as genetic markers for cardiovascular death risk in ESRD patients, which may permit targeting of preventive and early intervention.
منابع مشابه
Combined GSTM1-Null, GSTT1-Active, GSTA1 Low-Activity and GSTP1-Variant Genotype Is Associated with Increased Risk of Clear Cell Renal Cell Carcinoma
The aim of this study was to evaluate specific glutathione S-transferase (GST) gene variants as determinants of risk in patients with clear cell renal cell carcinoma (cRCC), independently or simultaneously with established RCC risk factors, as well as to discern whether phenotype changes reflect genotype-associated risk. GSTA1, GSTM1, GSTP1 and GSTT1 genotypes were determined in 199 cRCC patien...
متن کاملGlutathione S-transferase A1, M1, P1 and T1 null or low-activity genotypes are associated with enhanced oxidative damage among haemodialysis patients.
BACKGROUND Increased oxidative stress is a hallmark of end-stage renal disease (ESRD). Glutathione S-transferases (GST) are involved in the detoxification of xenobiotics and protection of oxidative damage. We hypothesized that genetic polymorphism in antioxidant enzymes GSTA1, GSTM1, GSTP1 and GSTT1 is more frequent in ESRD and modulates the degree of oxidative stress in these patients. METHO...
متن کاملGlutathione s-transferase M1 and T1 genetic polymorphisms in Iranian patients with glaucoma
Objective(s):Glaucoma is the second leading cause of blindness and it is related to oxidative stress based on numerous studies. Glutathione S-transferases (GSTs) are members of multigenic family, which have important role in cells as an antioxidant. In the present study, we examined the polymorphism of GSTT1 and GSTM1 deletion genotypes (T0M1, T1M0, and T0M0) in 100 Glaucoma patients (41with pr...
متن کاملIs Increased Susceptibility to Balkan Endemic Nephropathy in Carriers of Common GSTA1 (*A/*B) Polymorphism Linked with the Catalytic Role of GSTA1 in Ochratoxin A Biotransformation? Serbian Case Control Study and In Silico Analysis
Although recent data suggest aristolochic acid as a putative cause of Balkan endemic nephropathy (BEN), evidence also exists in favor of ochratoxin A (OTA) exposure as risk factor for the disease. The potential role of xenobiotic metabolizing enzymes, such as the glutathione transferases (GSTs), in OTA biotransformation is based on OTA glutathione adducts (OTHQ-SG and OTB-SG) in blood and urine...
متن کاملGlutathione S-Transferase T1, O1 and O2 Polymorphisms Are Associated with Survival in Muscle Invasive Bladder Cancer Patients
OBJECTIVE To examine the association of six glutathione transferase (GST) gene polymorphisms (GSTT1, GSTP1/rs1695, GSTO1/rs4925, GSTO2/rs156697, GSTM1, GSTA1/rs3957357) with the survival of patients with muscle invasive bladder cancer and the genotype modifying effect on chemotherapy. PATIENTS AND METHODS A total of 105 patients with muscle invasive bladder cancer were included in the study. ...
متن کامل